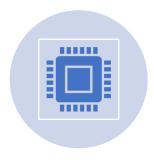


# CROPP: CUBESAT RESEARCH OF PLANT PLATFORMS

**Computer Science Contribution 2021-2022** 

Brandon DePalma - <u>bdepalma2017@my.fit.edu</u>


Faculty Advisor: Dr. Marius Silaghi - <a href="msilaghi@fit.edu">msilaghi@fit.edu</a>

**Client: NASA** 

## GOALS AND MOTIVATION

The goal of the project is for NASA to test plant pathogens in space without risking health of astronauts on a manned mission. Testing on the ISS for example can potentially put the crew at risk. The isolated CubeSat provides a test bed incapable of doing harm.

#### **APPROACH**



Using FlatSat STEM Kit to control on board environment with Arduino which is natively supported by FlatSat.



Control and communicate with the CubeSat by using Fox in a Box with Raspberry Pi ready open-source software.



Create a camera system to monitor plants and provide results of the experiments.



Design these elements along with area for the plants to grow inside the CubeSat size requirements.

### TECHNICAL CHALLENGES

FlatSat Kit and Fox in a Box are both hardware and software that is new to me.

I have worked with Arduino and Raspberry Pi but how these softwares interact with them will be something I have to learn.

Getting all the hardware to work together and using breadboards.

#### PROJECT MILESTONES

Milestone 1: Gaining familiarity with FlatSat and Fox in a Box and creating small demos. Creating Requirement and Design Documents with a Test Plan.

Milestone 2: Some FlatSat functionality. Having better understanding of the direction CubeSat project will be going with AEE members.

Milestone 3: Have Arduino and Raspberry Pi working for demos locally. Get FlatSat hardware modules working.